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§ Overview i Scoring strategy

% Step 1: Define the context
e IWhatis the task?, Who is the target audience?

* Step 2: Assess completeness, starting with 288 COMMENTARY
e Check if all Components of the type are met
o If ¥/ yes — Continue to Step 3

o If X no — Stop evaluation

% Goal: Allow for a more systematic evaluation of
an explanation’s quality

% Contributions: An education-inspired rubric and a dataset
of 26k explanations, written and later
quality-annotated by humans and LLMs

% Step 3: Assess guality
Assess the parts of Assess the quality e Check if all Dimensions of the type are met

I Rub rik’s dESign an explanation Dif €I GrgplEmogiEen o If ¢/ yes — Move to higher type and go back to Step 2

o If X no — Stop evaluation

Hierarchical,
nested typology

Type of
explanation

Components Dimensions EXAMPLE 1

[context] essay scoring (task); academic audience
Language [explanation] “The right answer is A, because this text is clearly of a low
english level,

Lower: less

informative 1.a) Action Grammaticality Conciseness
- 1.b) Reason Word Choice Appropriateness
sss COMMENTARY Cohesion Coherence . The expression in the final section is very
__________________________________________________________________________________________ heartfelt however, and the tone is excitable and keen throughout.” 7
2.a) Evidence Plausibility |
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1. Commonsense reasoning (HellaSwag) < Good =22 ARGUMENT
Data '
_ 2. Usu_al fallaf:y detection (LO_GIC) EXAMPLE 2
Collection 3. Basic reading comprehension (RACE) . S
_ : , [context] commonsense reasoning (task); academic audience
4. Essay scoring (Write & Improve (BEA19)) [explanation] “The answer is D because the sentence mentions that she
explains how to use the lawnmower and other tools, and then she cuts
_ Hﬁé 4 ) the grass. Option D accurately reflects this sequence of events.” 7
Explanation Q®  6LLMs o2 O 7 Annotators
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Assessment ans
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¥ Freq. and quality of explanation types B Source of bad explanations

@ Lower accuracy is associated with the lowest type: annotators tended to generate % LLMs: Low quality stems primarily from a lack of conciseness.
a “Commentary” when their answers were incorrect and “Justifications” when they * Humans: Low quality stems primarily from a lack of coherence.
were correct. % Experts vs. Contractors: Low quality stems primarily from

T1: Commonsense Reasoning T2: Fallacy Detection grammatica]ity and coherence, respectively_
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©Both LLMs and humans tend to write “Justifications” @ The number of bad explanations was low and concentrated in
©Explanation type seems to be correlated with the subjectivity of the task. T4, the Commentaries” across tasks.

hardest task, had a higher proportion of “Arguments”.
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